详细介绍: GTK-600缺相保护型热继电器常州直供LS(LG)GTH(K)系列产品: 一、特点: 1、直接与GMC-9 12 18 22接触器安装 2、通过使用安装支架(AZ-22H)可导轨或螺钉安装 3、尺寸小:44MM宽 4、1NO+1NC脱扣触点 5、CLASS10A脱扣标准 6、缺相保护型:GTK 7、标准型:GTH 8、适宜环境温度:-5-40度 9、手动/自动复位 10、自由脱扣设计 11、双金属片式 缺相保护型 GTK-22 0.14,0.21,0.33,0.52,0.82,1.3,2.1,3.3,5,6.5,7.5,8.5,11,15,19 GMC(D)-9~22 GTK-40 5,6.5,7.5,8.5,11,15,19,22,30,34 GMC(D)-32~40 GTK-85 8.5,11,15,19,22,30,34,42,55,65,74 GMC(D)-50~85 GTK-100 41,48,56,67,80,107 GMC-100~125 GTK-150 41,48,56,67,80,107,130 GMC-150 GTK-220 80,107,130,150,200 GMC-180~220 GTK-400 107,130,150,200,250,350 GMC-300~400 GTK-600 250,350,500,660 GMC-600,800但使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和 继电保护都比较复杂。 八、角形接线 当母线闭合成环形,并按回路数利用断路器分段,即构成角形接线。图 2-9 为四角形 接线。角形接线中,断路器数等于回路数,且每个回路都与两台断路器相连 接,检修任意一台断路器都不致中断供电,隔离开关只用于检修,从而具有 较高的可靠性和灵活性,运行操作方便。但在检修断路器 (如QF1) 时,将 开环运行。此时,如恰好发生断路器事故跳闸 (如QF2),则造成系统解列 或分成两半运行,甚至会造成停电事故。注意应将电源和馈线回路相互交替 错开布置或按对角原则连接,将会提高供电可靠性。 图 2-8 一个半断路器接线 图2-9 角形接线 多角形接线在开环和闭环两种运行状态时,所通过的电流差别很大,可 能使设备选择 造成困难,并使继电保护复杂化。此外,角形接线也不便于扩建。这种接线 多用于最终规 模较明确的 110kV 及以上的配电装置中,且以不超过六角形为宜。 九、电气主接线图例 图2-10 水电厂的电气主接线图 以上介绍了电气主接线的各种基本形式,一个发电厂变电所的电气主接 线,一般都由这些基本形式组成一个整体。进行电气设计时,要根据发电厂 变电所的类型、容量、在系统中的地位和作用、出线回路数、用户距离等各 种因素,进行综合的技术经济分析和比较,确定合理可行的电气主接线。 电气主接线图的绘制应遵循以下原则: 1. 采用新标准规定的电气设备的图形符号和文字符号; 2. 三相交流系统采用单线图表示,但电流互感器应表示三相; 3. 断路器、隔离开关、跌落式熔断器等开关电器以断开状态表示; 4. 在图上要标出电气设备的型号及技术参数。 图 2-10 示出了一个小型水电站电气主接线图图例。图中,相同元件的 型号不再重复标出。 第三节 开关电器的运行 一、开关电器的作用和分类 在电力系统中,开关电器是一次设备的重要组成部分,由于检修、改变 运行方式或发生故障时,须将发电机、变压器,线路等元件接入或退出,因 而要进行一些操作。例如:在正常情况下要能可靠地接通和开断电路;在改 变运行方式时,要能灵活地进行切换操作;在电路发生故障情况下,须能迅 速切断故障电流,保证未发生故障部分的继续运行;在检修设备时,隔离带 电部分,保证工作人员的安全等等。为了完成上述这些操作,在电力系统中, 必须装设各种类型的开关电器。 根据开关电器在电路中担负的任务,可以分成下列几类: (1) 仅用来在正常工作情况下,断开或接通正常工作电流的开关电器, 如高压负荷开关、低压闸刀开关、接触器等。 (2) 仅用来断开故障情况下的过负荷电流或短路电流的开关电器,如高 低压熔断器。 (3) 既用来断开或接通正常工作电流,也用来断开或接通过负荷电流或 短路电流的开关电器,如断路器、自动空气开关、跌落式熔断器等。 (4) 主要用来检修时隔离电压的开关电器,如隔离开关等。 在高压电路中,断路器和隔离开关是最重要且用得最多的开关电器,本 节对它们的运行加以介绍。 二、断路器和隔离开关操作的顺序 断路器及其两侧的隔离开关,其操作顺序有严格的规定。停电时,先 跳开断路器,在检查确认断路器已断开的情况下,先拉负荷侧的隔离开关, 后拉电源侧的隔离开关;送电时,先合电源侧的隔离开关,后合负荷侧的隔 离开关,再合上断路器。有人以为,既然断路器已经断开,先操作那一侧的 隔离开关无关紧要,都不会造成带负荷拉合隔离开关的情况。问题在于,当 断路器在合闸位置未被查出而造成带负荷拉合隔离开关的误操作事故时,其 引起的后果是大不相同的。例如,在线路停电时,若断路器在合闸位置未被 查出,先拉负荷侧的隔离开关造成短路,则故障发生在线路上,该线路的继 电保护动作跳开线路断路器,隔离了故障点,只使该线路停电,不致影响其 GTK-600缺相保护型热继电器常州直供但使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和 继电保护都比较复杂。 八、角形接线 当母线闭合成环形,并按回路数利用断路器分段,即构成角形接线。图 2-9 为四角形 接线。角形接线中,断路器数等于回路数,且每个回路都与两台断路器相连 接,检修任意一台断路器都不致中断供电,隔离开关只用于检修,从而具有 较高的可靠性和灵活性,运行操作方便。但在检修断路器 (如QF1) 时,将 开环运行。此时,如恰好发生断路器事故跳闸 (如QF2),则造成系统解列 或分成两半运行,甚至会造成停电事故。注意应将电源和馈线回路相互交替 错开布置或按对角原则连接,将会提高供电可靠性。 图 2-8 一个半断路器接线 图2-9 角形接线 多角形接线在开环和闭环两种运行状态时,所通过的电流差别很大,可 能使设备选择 造成困难,并使继电保护复杂化。此外,角形接线也不便于扩建。这种接线 多用于最终规 模较明确的 110kV 及以上的配电装置中,且以不超过六角形为宜。 九、电气主接线图例 图2-10 水电厂的电气主接线图 以上介绍了电气主接线的各种基本形式,一个发电厂变电所的电气主接 线,一般都由这些基本形式组成一个整体。进行电气设计时,要根据发电厂 变电所的类型、容量、在系统中的地位和作用、出线回路数、用户距离等各 种因素,进行综合的技术经济分析和比较,确定合理可行的电气主接线。 电气主接线图的绘制应遵循以下原则: 1. 采用新标准规定的电气设备的图形符号和文字符号; 2. 三相交流系统采用单线图表示,但电流互感器应表示三相; 3. 断路器、隔离开关、跌落式熔断器等开关电器以断开状态表示; 4. 在图上要标出电气设备的型号及技术参数。 图 2-10 示出了一个小型水电站电气主接线图图例。图中,相同元件的 型号不再重复标出。 第三节 开关电器的运行 一、开关电器的作用和分类 在电力系统中,开关电器是一次设备的重要组成部分,由于检修、改变 运行方式或发生故障时,须将发电机、变压器,线路等元件接入或退出,因 而要进行一些操作。例如:在正常情况下要能可靠地接通和开断电路;在改 变运行方式时,要能灵活地进行切换操作;在电路发生故障情况下,须能迅 速切断故障电流,保证未发生故障部分的继续运行;在检修设备时,隔离带 电部分,保证工作人员的安全等等。为了完成上述这些操作,在电力系统中, 必须装设各种类型的开关电器。 根据开关电器在电路中担负的任务,可以分成下列几类: (1) 仅用来在正常工作情况下,断开或接通正常工作电流的开关电器, 如高压负荷开关、低压闸刀开关、接触器等。 (2) 仅用来断开故障情况下的过负荷电流或短路电流的开关电器,如高 低压熔断器。 (3) 既用来断开或接通正常工作电流,也用来断开或接通过负荷电流或 短路电流的开关电器,如断路器、自动空气开关、跌落式熔断器等。 (4) 主要用来检修时隔离电压的开关电器,如隔离开关等。 在高压电路中,断路器和隔离开关是最重要且用得最多的开关电器,本 节对它们的运行加以介绍。 二、断路器和隔离开关操作的顺序 断路器及其两侧的隔离开关,其操作顺序有严格的规定。停电时,先 跳开断路器,在检查确认断路器已断开的情况下,先拉负荷侧的隔离开关, 后拉电源侧的隔离开关;送电时,先合电源侧的隔离开关,后合负荷侧的隔 离开关,再合上断路器。有人以为,既然断路器已经断开,先操作那一侧的 隔离开关无关紧要,都不会造成带负荷拉合隔离开关的情况。问题在于,当 断路器在合闸位置未被查出而造成带负荷拉合隔离开关的误操作事故时,其 引起的后果是大不相同的。例如,在线路停电时,若断路器在合闸位置未被 查出,先拉负荷侧的隔离开关造成短路,则故障发生在线路上,该线路的继 电保护动作跳开线路断路器,隔离了故障点,只使该线路停电,不致影响其
|